
FDA Pilot 4 - Sprint 1 wrap-up
Podman & webAssembly

RConsortium Submissions Working Group

Authors: André Veríssimo, Damian Rodziewicz, Vedha Viyash, Paweł Rzymkiewicz

Period under review: June 19th - July 3rd 2023 (2 weeks)

Summary

Podman
○ Deploys Pilot2 shiny app locally without installing R or packages
○ Flexible configuration
○ Requires podman & access to base image (docker.io)

 webR (webAssembly)

○ Learning sprint to understand current status
○ Working version of a teal minimal application
○ 22 dependencies from Pilot2 not easily ported

݀ Most are golem-based

Agenda
1. Podman
2. webR (webAssembly)
3. Lessons learnt
4. Future work
5. Open discussions & Impact

 Appsilon/experimental-fda-submission-4-podman

Goal: Container-based method to deploy Pilot 2 Shiny App

What we did:

● Configurable Podman Dockerfile / docker-compose.yml
○ R version
○ Registry / organization name / image name (differences between

docker.io and ghcr.io)

● Documentation on creating the container

● CI: Automated build on amd64 and arm64 platforms

https://github.com/Appsilon/experimental-fda-submission-4-podman/

Podman short demo

1. Install system
 requirements

2. Install R packages

(use host renv cache)

(configurable shiny directory)

3. Init script

(build arguments for flexibility)

(fallback to video)

 webR (webAssembly)

Goal: Explore webR potential as a method to deploy a Shiny application on the

browser without additional requirements (setup R / podman / a server)

What we did:

● Understand the build process

● Manually build and curate 34 unsupported R packages
○ Focus on supporting teal ➞ Pilot2 dependencies

● Discussion with George Stagg (principal webR developer @Posit)

○ Very interested in the pilot
○ One of the outputs is the standalone shiny webR template for the demo

● 1 upstream bug fix
○ 1 more pending (allows for {teal.*} build while not on CRAN)

r-wasm/webr

r-wasm/webr-repo

georgestagg/shinylive

Build from source

Get from CDN

Get from npm

Build R packages for webR

Live Experimental R ShinyLive with webR

webR docs

georgestagg/shiny-standalone-webr-demo

 fork: Appsilon/experimental-teal-webr-demo

Demo Demo of standalone webR shiny app

🤖 beware: unstable

 Resources

https://github.com/r-wasm/webr
https://github.com/r-wasm/webr-repo
https://github.com/georgestagg/shinylive
https://docs.r-wasm.org/webr/latest/
https://github.com/georgestagg/shiny-standalone-webr-demo
https://github.com/Appsilon/experimental-teal-webr-demo

 webR limitations
 some of the current limitations

○ Very low coverage of CRAN packages
○ Non-supported R package need to be build manually and deployed

○ No testing framework in place
○ Currently it’s not possible to validate packages
○ {testthat} package is available, but it’s not usable to test package

○ Slow loading
○ Packages are being downloaded and installed in runtime
○ Alternative

○ Unstable / incomplete API and documentation
○ No documentation on package building
○ Changes very fast and without warning

■ This is at a pre-alpha stage

○ Some packages only have limited functionality despite being available
○ {openssl} for example

 webR short demo
https://teal-webr-example.netlify.app (it might take a long while to fully load)

Appsilon/experimental-teal-webr-demo (fork this & deploy yourself on netlify)

live demo:

Custom teal module just as Pilot 2

Some stats:
○ 34/100 packages built during this sprint
○ {vctrs} & {styler} required patches

Upstream r-wasm/webr-repo
○ 1 upstream bug fix to build R packages
○ 1 pending PR on using custom repository

to allow for non-cran packages ({teal},
{teal.*})

(fallback to video)

https://teal-webr-example.netlify.app
https://github.com/Appsilon/experimental-teal-webr-demo

Lessons learnt

● Podman is a valid alternative to Docker

○ Speeds up development to have volume support during `build`

● webR has a good potential, but it needs to mature

○ Update on state of the project

○ Deeper understanding of current webR internals

○ Poor support for development in arm64 environment

Future work
technical improvements

Podman:: Some technical improvements
● Publish container image to container registry

● Understand FDA access to registries
○ Include image as part of submission?

webR:: Continue exploratory work
● Cleanup of Pilot2 to remove unnecessary dependencies (devtools, golem, XML2, …)

● Podman/Docker image to help build webR & packages
○ Convoluted process that still requires a lot of manual fixes and iterations

Open discussions & Impact

What is needed to take this project further? 🔭

How can Appsilon support the overall impact of the project?

Thank you

(click here to go
back to
presentation)

https://docs.google.com/file/d/1mLA3ojltheGIGdcyrQdoumfR_WV6KUIk/preview

(click here to go
back to
presentation)

https://docs.google.com/file/d/1ZHTwHCwfK0UbyUTM9ADeXhdiIGFJth0R/preview

Resources

r-wasm/webr

r-wasm/webr-repo

georgestagg/shinylive

Build from source

Get from CDN

Get from npm

Build R packages for webR

Live Experimental R ShinyLive with webR

webR docs

georgestagg/shiny-standalone-webr-demo

 fork: Appsilon/experimental-teal-webr-demo

Demo Demo of standalone webR shiny app

🤖 beware: unstable

https://github.com/r-wasm/webr
https://github.com/r-wasm/webr-repo
https://github.com/georgestagg/shinylive
https://docs.r-wasm.org/webr/latest/
https://github.com/georgestagg/shiny-standalone-webr-demo
https://github.com/Appsilon/experimental-teal-webr-demo

Resources

r-wasm/webr

Get from CDN

library(httpuv)
runServer(host = "127.0.0.1", port = 8080,
 app = list(
 staticPaths = list(
 "/" = staticPath(
 ".",
 headers = list(
 "Cross-Origin-Opener-Policy" = "same-origin",
 "Cross-Origin-Embedder-Policy" = "require-corp"
)
)
)
)
)

server.R

<!DOCTYPE html>
<html>
 <head>
 <title>Using WebR</title>
 <script>
 function displayMessage(message) {
 document.body.innerHTML = message;
 }
 </script>
 </head>
 <body>
 <script type="module">
 displayMessage("Please wait while the WebR is initiated.");
 import("https://webr.r-wasm.org/latest/webr.mjs").then(
 async ({ WebR }) => {
 const webR = new WebR();
 await webR.init();
 displayMessage("WebR is Initiated!");
 }
);
 </script>
 </body>
</html>

index.html

Rscript server.R Run the server and check the browser:
http://127.0.0.1:8080/

https://github.com/r-wasm/webr
https://docs.r-wasm.org/webr/latest/serving.html
http://127.0.0.1:8080/

Resources

r-wasm/webr

Get from npm

import { WebR } from '@r-wasm/webr';
const webR = new WebR()
await webR.init();

npm i @r-wasm/webr

https://github.com/r-wasm/webr

Resources

r-wasm/webr

Build from source

1. ~/webr > ./configure
2. ~/webr > make Builds the webr in the /dist

https://github.com/r-wasm/webr

Resources

Build R packages for webR

Note: Make sure that webR is built from source on your machine

r-wasm/webr-repo

1. ~/webr-repo > make
2. ~/webr-repo > make pkg-<PACKAGE_NAME>

Updates the R packages and
Builds the specified R package

Output of this would be the /repo would
be populated with the R package

https://github.com/r-wasm/webr-repo

Resources

r-wasm/webr

Create npm package

~/webr/src > make package

Note: In order to include the built R packages in the webr npm package include the
webr-repo libs in the make config file called ~webr/src/.webr-config.mk like this:
WEBR_LIB=/r-wasm/webr-repo/lib

Creates r-wasm-webr-0.1.2-dev.tgz

https://github.com/r-wasm/webr

Resources
Live Experimental R ShinyLive

with webR

georgestagg/shinylive

https://github.com/georgestagg/shinylive

georgestagg/shiny-standalone-webr-demo

 fork:
Appsilon/experimental-teal-webr-demo

Resources Demo Demo of standalone webR shiny app

https://github.com/georgestagg/shiny-standalone-webr-demo
https://github.com/Appsilon/experimental-teal-webr-demo

